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Abstract. Nonadiabatic behavior of metastable systems modeled by anharmonic Hamiltonians is repro-
duced by the Fokker-Planck and imaginary time Schrödinger equation scheme with subsequent symplectic
integration. Example solutions capture ergodicity breaking, reassure the H-theorem of global stability
[M. Shiino, Phys. Rev. A 36, 2393 (1987)], and reproduce spatially extended response under alternate
source fields.

PACS. 64.60.Cn Order-disorder transformations; statistical mechanics of model systems – 77.80.Dj
Domain structure; hysteresis – 77.80.Fm Switching phenomena

1 Introduction

Metastable systems is the active field of study steamed
by developments in condensed state physics with model
Hamiltonians and relevant Fokker-Planck equations as
natural framework of the theory [1]. However, its capacity
to reproduce critical phenomena crucially depends on the
mathematical technique and in this context the Wentzel-
Kramer-Brilluin (WKB) analysis, based on mapping be-
tween Fokker-Planck and imaginary time Schrödinger
equation, has received a renewed attention [2] and applica-
tion to systems modeled by anharmonic, nonconservative
and nonlocal model Hamiltonians [3,4]. The subject of
this work is the development in nonlinear Fokker-Planck
— imaginary time Schrödinger equation scheme reproduc-
ing critical behavior. Special attention is paid to polariza-
tion response in ferroelectrics modeled by Ginzburg —
Landau type model Hamiltonians. Unlike the customary
direct integration of kinetic equations [5,6] the aforemen-
tioned scheme yields a systematic solution of the Dirichlet
problem. The paper is organized as follows. In Section 2
we give insight in the Fokker-Planck — imaginary time
Schrödinger equation scheme and its application to dy-
namic hysteresis [7,8]. In Section 3 this scheme is extended
for the model of globally coupled anharmonic oscillators
reproducing polarization response under alternate source
field. In Section 4 the spatial extension and finite size ef-
fects are reproduced within the model of locally coupled
anharmonic oscillators. The physical background, as well
as key problems for further developments, is analyzed in
Section 5.
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2 Fokker-Planck and imaginary time
Schrödinger equation scheme

The starting point for further generalization is the Fokker-
Planck equation for probability density of the order pa-
rameter (polarization) ρ(P, t)

∂ρ(P, t)
∂t

=
∂

∂P

(
δU

δP
ρ(P, t)

)
+ Θ

∂2ρ(P, t)
∂P 2

. (1)

The (dimensionless) energy functional

U = −P 2/2 + P 4/4 + (∇P )2 /2 − λ(t)P, (2)

accentuated in this section emerges from arbitrary model
Hamiltonian H =

∫
U(P)dV . The survey hereafter starts

with Langevin equation in physical units

∂P (x, t)
∂t

= −γ
δU [P (x, t)]

δP (x, t)
+ η(t)

subsequently transformed in dimensionless form. Since
attention is focused on Ginzburg-Landau type model
Hamiltonians, the order parameter P in equation (2)
stands for electric polarization. The operator δ means
variational derivative of electric polarization as emerged
by the gradient term in equation (2) accounting for spa-
tial inhomogeneity in thermodynamic models. However,
in equation (1) the entity P appears in standard way as
the argument of probability distribution ρ(P, t) return-
ing the expectation value of polarization. The diffusion
coefficient Θ comes into play from the Langevin term
modeling (additive) fluctuations in Markov-like system. In
dimensionless representation equations (1, 2) all specifica-
tions of the system are condensed in diffusion coefficient Θ
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customary introduced as a noncritical parameter of the-
ory. Developments toward the microscopic interpretation
of diffusion coefficient is a problem in quantum-classical
boundary [1] and no constructive results have been ob-
tained yet. Considering critical dynamics the standard
Fokker-Planck and imaginary time Schrödinger scheme [2]
requires that it is possible to divide the spatial domain
in decomposed microscopically large blocks modeled by
equation (2) so assigning the interaction between blocks
separately. To clarify the subtle points in Sections 2, 4
is convenient to consider a single block and ignore inte-
gration equation (2) over volume (since rescaling of the
diffusion coefficient is not essential). The entity λ(t) in
equation (2) denotes alternate driving (source) field, and
the gradient term (∇P )2 specify first neighbor interac-
tion. However, in presence of noise the energy functional
equation (2) is not rich enough to reproduce ergodicity
breaking and divergence of spontaneous polarization. In
this case the probability density of the order parameter
equation (1) transforms in a multivariate one and the reg-
ular term of equation (1) comprises expectation value of
the order parameter. In this sense the problem is nonlin-
ear and its solution involves both a specific mathemati-
cal technique and an extension of the model Hamiltonian
equation (2).

The essence of the mathematical technique, if applied
to an individual block, is to transform equations (1, 2)
in imaginary time Schrödinger equation for the auxil-
iary function G(P, t) introduced by the standard WKB
ansatz [2] and unfolding expectation value of polarization
through the first moment of probability density ρ(P, t)

ρ(P, t) = exp[F (P )]G(P, t). (3)

The imaginary time Schrödinger equation is read as

∂G(P, t)
∂t

=
[
Θ

∂2

∂P 2
+ V (P )

]
G(P, t) (4)

and the potential operator V (P ) is given by

V (P ) =
[

1
2Θ

∂U(P, t)
∂t

− 1
4Θ

[U ′(P, t)]2 +
1
2
U ′′(P, t)

]
.

(5)
The entity F (P ) in equation (3) is found as an analytical
solution of an ordinary differential equation for so cancel-
ing the first derivative of auxiliary function in equation (4)
and simultaneously determining the WKB ansatz as

ρ(P, t) = exp[−U(P )/2Θ]G(P, t). (6)

The mapping between equations (1, 4) is quite general
and applicable for arbitrary energy functionals. The ana-
lytical and quite exact part of computations is completed
by recurrence relation for the auxiliary function valid for
a small time slice ∆t

G(P, t + ∆t) = exp
[
∆t

(
Θ

∂2

∂P 2
+ V (P )

)]
G(P, t). (7)

Fig. 1. Dynamic hysteresis plot for PbTiO3 at temperature
T = 1.005 TC , diffusion constant 1/100, and frequency 10−3.
The polarization is normalized by the spontaneous one.

The symplectic integrator for equation (7) is read as

(
1 − Θ∆t

2
∂2

∂P 2

)
G(P, t + ∆t)

=
{

exp
[
∆t

2
V +

∆t3

48
(∇V )2

] (
1 +

Θ∆t

2
∂2

∂P 2

)

× exp
[
∆t

2
V +

∆t3

48
(∇V )2

]}
G(P, t) (8)

and the potential operator V is given with time argument
t := t + ∆t/2 [9,10] so accounting for the nonconserva-
tive nature of model Hamiltonian. Symplectic integration
equation (8) is motivated by its norm conservation and
long term stability and, as showed hereafter, applicability
to ergodicity breaking and bifurcation of relaxation time
as a natural extension of equations (1–8).

Estimates of the nonadiabatic behavior represent one
of the classical topics of the theory of metastable sys-
tems and are illustrated hereafter by illustrative exam-
ples of dynamic hysteresis — the combined effect of pe-
riodic source field and additive noise. Dynamic hysteresis
plots [3] based on quartic energy functional are in agree-
ment with analytical results [7]. Application of the sym-
plectic integration technique to sixth order energy func-
tional U(P1) = α1P

2
1 +α11P

4
1 +α111P

6
1 within the range of

metastability is demonstrated in Figure 1. The parameters
for PbTiO3 [11] are as follows: Curie-Weiss constant 1.5×
105 ◦C, transition temperature TC = 492.2 (◦C), α1 =
61 × 105 (m/F) at TC , α11 = −9.235 × 107 (m5/(C2F),
α111 = 3.469 × 108 (m9/(C4F) . For model Hamiltonians
represented in physical units an entity of interest is the
maximum amplitude of the source field (the thermody-
namic coercive field) at which the multiwell energy land-
scape generated by energy functional transforms in a sin-
gle well one. Fluctuations favor the polarization switching
and (in this representative example) a 15% value of the
thermodynamic coercive field is sufficient for modeling a
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Fig. 2. Comparision of first principle clamped-strain static
hysteresis plot for PbTiO3 (bold line) [8] and the polarization
response on periodic source (dots). At high frequency source
field (Ω = 10−2) the dynamic hysteresis plot approaches to the
first principle one and the coercive field resembles the static
one, as expected.

hysteresis plot. This value is accepted as a merit for the
dimensionless amplitude of the source field represented in
Figure 1.

Another illustrative solution demonstrates matching
between the statistical and first principles calculations [8]
in which the nonlinear dielectric and piezoelectric response
of tetragonal PbTiO3 is modeled by energy functional
F (η1, η3, Pz) (in denominations of [8]).

F =
1
2
c11(2η2

1 + η3) + c12

(
2η1η3 + η2

1

)
+ A2P

2
z

+ A4P
4
z + A6P

6
z + 2B1yyη1P

2
z + B1zzη3P

2
z . (9)

Here η1 = ηxx = ηyy and η3 = ηzz are components
of strain tensor, and the expansion is truncated to the
first order in elastic and polarization-strain coupling.
Clamped-strain response obtained by zeroing the varia-
tions of equation (9) with respect to the components of
strain tensor yields renormalization of the expansion co-
efficient at P 4 in equation (9) as follows [8]

F (Pz) = A2P
2
z

+

(
A4+

2c12B1zzB1yy−c11B
2
1yy−(c11+c12)B2

1zz/2
(c11+2c12) (c11−c12)

)
P 4

z

+ A6P
6
z . (10)

Since the first expansion coefficient A2 < 0 the energy
landscape exhibit two local minima resulting in static
hysteresis loop as shown by line in Figure 2. Numerical
values of the parameters for PbTiO3 [8] are as follows:
A2 = −0.003, A4 = 0.005, A6 = 0.004 (the units for
expansion coefficients A2, A4, A6 are m/F, m5/(C2F),
and m9/(C4F)). Components of elastic tensor are c11 =
4.374, c12 = 1.326, and the coefficients of polarization-
strain coupling are equal to B1zz = −1.99 and B1yy =
−0.049

(
Nm2/C2

)
. Modeling of dynamic hysteresis within

the scheme equations (1–8) starts with variation of equa-
tion (10) and yields Langevin equation (in physical units)

∂Pz

∂t
= −γ

δ [F (Pz) − Pzλ(t)]
δPz

+ η(t). (11)

Here the parameters of theory are the prefactor (ki-
netic coefficient) γ, period of source field, and the noise
strength η(t). At appropriate fitting (diffusion coefficient
1/1000, kinetic coefficient γ = 10) the dynamic hysteresis
plot (dots) match fairly well with the static one.

3 Model of globally coupled anharmonic
oscillators

Nonadiabatic behavior of metastable systems under ar-
bitrary driving is a generic problem of physics for-
mally determined by more or less effective model
Hamiltonians comprising polarization, polarization-strain
coupling, dipole-dipole, driving field, and other terms. The
relevant static solutions are well known and are man-
aged with Fourier expansion, variational, and elastostatic
Green functions. However, these classical techniques fail in
case of critical dynamics, being a highly motivated prob-
lem both for physics and technology. Early solutions of
this kind have made on the intersection of the theory of
complex systems (modeled with quartic potential) and
truncated Ginzburg-Landau model Hamiltonians. Some
results based on quartic model potential [2,7,15] exhibit
a single ground state as a drawback. Advancement, recov-
ering critical phenomena was suggested in [14], however,
limited to the case of zero source field. Extension toward
arbitrary source field is a problem of mathematical tech-
nique managed by symplectic integration. The physical
model [14] requires that it is possible to divide the spatial
domain in a large number of blocks in such a way that
each cell is small enough for all the oscillators in the cell
to be assumed to possess the same characteristics of the
cell. A set of Langevin equations for the polarization P (t)
is read as

∂Pi

∂t
= −∂F (Pi)

∂Pi
+

N∑
k=1

ε

N
(Pk − Pi) + ηi(t) (12)

here the stochastic terms ηi(t) determines additive white
noise and the factor ε > 0 denotes the strength of at-
tractive mean-field type coupling. At the thermodynamic
N → ∞ limit the averages of Pk in equation (12) can be
assumed to behave in a deterministic way, namely,

lim
N→∞

(
1
N

N∑
k=1

Pk(t)

)
= P̄ (t)

and the corresponding Fokker-Planck equation concern
probability density for each Pi which originates from
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various realizations of white noise

∂ρ

∂t
=

N∑
i=1

[
− ∂

∂Pi

[
− ∂F

∂Pi
+

ε

N

N∑
k=1

Pk

− ε

N

N∑
k=1

Pi

]
ρ + Θ

∂2ρ

∂P 2
i

]
. (13)

Recognizing that ε
N

∑N
k=1 Pk(t) = εP̄ (t) and each ith en-

tity concerns a coarse-grained block described by equal
kinetics equation (12), the equation (13) reduces to the
model of globally coupled anharmonic oscillators

ρ̇(P, t) =
∂

∂P

[
U ′(P, t) + Θ

∂

∂P

]
ρ(P, t) (14)

which generates stationary solutions of equation (14) ex-
hibiting both bifurcation of the ground state (spontaneous
polarization) and divergence of the relaxation time for
a rich scale of model Hamiltonians. The simplest proto-
type energy functional comprises the nonlinear term P̄ (t)
emerging from the mean field coupling, namely

U(P, t) = −P 2

2
+

P 4

4
− Pλ(t) +

ε

2
[
P − P̄ (t)

]2
. (15)

The relevant stationary solution is given in [3] and is in
agreement with the Boltzmann’s H-theorem for global sta-
bility (ensuring the existence of a uniquely determined
long-time probability distribution ρ∞ (P, t)) and, in case
of nonlinearity [14], stating that (at overcritical interac-
tion constant) the system always reaches global stability
in the sense that any time dependent solution of equa-
tion (14) lying far from equilibrium must be attracted
by either one of those stationary solutions without any
possibility of runaway behavior or limit cycle type oscil-
lations. Temporal response going beyond this theorem is
reproduced in the course of symplectic integration and
starts with the ansatz equation (3) that yields relation for
the auxiliary function equation (4) V (P, t) = V1(P, t) +
V2(P̄ (t), P, t) made up of both the linear V1(P, t) and the
nonlinear V2(P̄ (t), P, t) terms in the potential operator
and explicitly given in [12]. Example solution for a sys-
tem with initially positive remnant polarization affected
by a negative source is demonstrated in Figure 5. The
source is modeled by a sow tooth shaped variable length
pulse. What is anticipated at t → ∞ limit is approach-
ing the expectation value P̄ to a remnant polarization,
either Pr or −Pr. The sign of the expectation value P̄ at
the time instant T at which the source turns to zero is cru-
cial, namely, at P̄ (t = T ) > 0 the remnant polarization
approaches to P̄ (t = ∞) → P̄r, and P̄ (t = ∞) → −P̄r

otherwise as it follows from the H-theorem of global sta-
bility [14]. This behavior is confirmed in Figure 5 with
P̄ (T ) = 0 as the point splitting the P̄ - space in two do-
mains of attraction for Pr and −Pr. However, time propa-
gation of the system at 0 < t < T within which the source
field is nonzero goes beyond the H-theorem of global sta-
bility [14] and is revealed in the course of symplectic inte-
gration. In this representative solution the source field is

Fig. 3. Temporal response in case of global coupling. Lines
illustrate the effect of source pulses being to short (undercrit-
ical) for polarization switching and the system remains in the

P
(+)
r domain of attraction. Otherwise, under pulses with over-

critical length (dots) the system enters in the P
(−)
r domain of

attraction.

specified by −0.027 (a.u.) amplitude (corresponding∼0.07
of the thermodynamic coercive field in physical units) and
the pulse length varying between320 ≤ T ≤ 1580 a.u. As
shown in Figure 5 the 710 and 1580 (a.u.) source pulses
are obviously overcritical and belong to the −Pr domain
of attraction. Otherwise, the 320 and 640 (a.u.) source
pulses are undercritical and belong to the Pr domain of
attraction.

Nonlinearity of this problem is managed by guest func-
tion method [12] that has essential consequences for spa-
tially extended problem emerged by locally coupled model
in which each anharmonic oscillator is coupled with its
first neighbors.

4 Polarization response in the model
of locally coupled anharmonic oscillators

Spatial dependence of polarization field, disappearing in
the model of globally coupled anharmonic oscillators equa-
tions (12), is restored in the case of first neighbors cou-
pling. This approach assumes that (i) the system consist
of finite number of (microscopically large) blocks modeled
by Ginzburg-Landay energy functional

Φi = −1
2
P 2

i +
1
4
P 4

i − λ(t)Pi

(here we consider the T < TC case and the sixth order
term is irrelevant) and (ii) the first neighbor interaction
between (macroscopically small) blocks holds so address-
ing the problem to ensemble of interacting blocks. Going
around the microscopic interpretation of the strength of
interaction and the correlation length, the problem is for-
mulated by the model Hamiltonian

H ≡
N∑
i

{
Φi +

ε

2

((
P̄i+1(t) − Pi

)2 +
(
P̄i−1(t) − Pi

)2
)}

.

(16)
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Fig. 4. Stationary solution for 180◦ domains in a 1-d region
with zero boundary conditions and various coupling constants.

Here the expectation values P̄k are unknown quantities
and are evaluated selfconsistently afterward. Kinetic equa-
tions derived from equation (16)

∂Pi

∂t
= −∂Φi

∂Pi
+ ε

(
P̄i+1(t) − 2Pi + P̄i−1(t)

)
(17)

readdress the problem to the set of Fokker-Planck equa-
tions for probability distribution

ρ̇(Pi, t) = − ∂

∂Pi

[
−∂Φi

∂Pi
ρ(Pi, t)

+ ε
(
P̄i+1(t) − 2Pi + P̄i−1(t)

)
ρ(Pi, t)

]
+ Θi

∂2

∂P 2
i

ρ(Pi, t).

(18)

For illustration purpose we consider 1-d Dirichlet problem
for two 180◦ domains. Initial conditions for probability
density of polarization are given by stationary solution of
equation (18)

ρ(Pi) = C exp
[−Φ(Pi) + εPi(P̄i−1 − Pi + P̄i+1)

Θi

]
. (19)

Here C is normalization constant, and P̄0 = 0, P̄imax+1 = 0
are zero boundary conditions. Implementing normaliza-
tion of the probability distribution as well as the first mo-
ment P̄ =

∫ ∞
−∞ PρdP the selfconsistency condition for P̄i

is given by

1
C

(∫ Pmax

Pmin

Pi exp
[−Φ(Pi, 0)+εPi(P̄i−1−Pi+P̄i+1)

Θi

]
dPi

)

− P̄i = 0. (20)

Here C is normalization constant [12]. Initial state of
Cauchy problem is given by stationary solution of equa-
tion (18) for starting values P̄

(s)
i = 1 for i ∈ [1, imax/2)

and P̄
(s)
i = −1 for i ∈ (imax/2, imax] as demonstrated in

Figure 4.

Fig. 5. Effect of negative source field at t = 26 and t = 33
time instants corresponding to 0.007 and 0.012 of the ther-
modynamic coercive field. Representative parameters of the
problem: first neighbor coupling constant ε = 0.035, diffusion
constant Θ = 0.05.

Spatial coordinate emerge from unit size blocks. In to-
tal there is a spatial mesh of 100 blocks and the spatial
coordinate is paralleled with the number of the block.

Nonstationary solution of equation (18) starts with
equation (3) and Fokker-Planck equations equations (22),
and yields imaginary time Schrödinger equation for the
auxiliary function defined over spatial mesh i ∈ [1, imax]

Ġ(Pi, t) = [T [i] + V1[i] + V2[i] + K[i]] G(Pi, t). (21)

Here the kinetic operator T [i] is given by T [i] = Θ ∂2

∂P 2
i
, the

linear part V1[i] and the nonlinear part V2[i] of potential
operators in equation (28) are given by relations

V1[i] = − 1
4Θi

(
∂Φi

∂Pi

)2

+
1
2

(
∂2Φi

∂P 2
i

)

and

V2[i] =
ε

4Θi

(
4Θi −

(
2Pi − P̄i−1(t) − P̄i+1(t)

)

×
(

2Pi − ε
(
P̄i−1(t) + P̄i+1(t)

)
+ 2

∂Φ

∂Pi

))
,

correspondingly. Finally, correction to the poten-
tial operators generated by explicit time depen-
dence of the energy functional yields as K[i] =
[−εPi

˙̄Pi−1(t) − εPi
˙̄Pi+1(t) + Φ̇i] (2Θ)−1. Subsequent nu-

merical calculations include the solution of equation (21)
and evaluation of the merit M(Q) =

∫
Pρ(P, Q, t)dP −

(P̄ (0)+Q∆t) (transformed in analytical function of Qi by
quadratic interpolation). This trick generates a set of cou-
pled algebraic equations M(Qi) = 0 for expansion coeffi-
cients Qi so returning the density distributions by equa-
tions (3) over spatial mesh in every time slice. Preliminary
results of the 1-d domain switching are shown in Figure 5
for a couple of 180◦ domains Figure 4. Here P̄ (0) is the sta-
tionary polarization represented in Figure 4. The switch-
ing is initiated by a representative negative source field
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λ(t) ∼ [
exp[−(t/150)2] − 1

]
that deviates the value of po-

larization in both domains. It must be emphasized that
the deviation P̄ (t) − P̄ (0) being negative for any spatial
coordinate prevails at the boundaries and at the domain
wall in accord with recent estimates [15].

In 3-d case the quantity of interest is 3-d G(P,x, t)-
function which inherits the impact of all components of
the polarization vector. However, the general structure of
symplectic integration scheme equations (1–8) remains un-
changed and its spatial extension is straightforward.

5 Discussion and conclusions

Symplectic integration of nonlinear Fokker-Planck equa-
tions capturing Landau-type critical dynamics motivates
the analysis of where do the (over)simplified model
Hamiltonians constituted from a set of anharmonic
oscillators (blocks) stand. Firstly, for globally coupled
systems typically each lattice site is connected to all
others with the same coupling strength. Physically
meaning are microscopically large and macroscopically
small objects within which the order parameter is
uniform and obey Landau relations. Mutual effect of
coupling and noise reproduces both the ordered phase
and the ergodicity breaking. Another level of analysis
is represented by diffusively coupled blocks located at
the sites of a lattice with just nearest neighbor coupling.
Formally it yields a generalization of usual thermody-
namics for spatially inhomogeneous situations, where
the order parameter become a coordinate dependent
field P(x) if smoothed over blocks whose center point
lies at x [1]. An assumption hidden in aforementioned
Langevin — Fokker-Planck scheme is that coupling of
the constants of theory (prefactor, diffusion coefficient,
coupling constant) with the order parameter and other
quantities of the theory is not critical. Nevertheless, the

symplectic integration approach described here can be ex-
tended to more complex Hamiltonians, and to the treat-
ment of multidimensional problems, providing possible di-
rections for future developments of the method.
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